Linking microbiome and hyperaccumulation in plants (2025)

Authors

  • Valentina BočajUniversity of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Marjana RegvarUniversity of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
  • Paula PongracUniversity of Ljubljana, Biotechnical Faculty and Jožef Stefan Institute

DOI:

https://doi.org/10.14720/abs.68.2.19957

Keywords:

hyperaccumulating plants, dark septate endophytes, arbuscular mycorrhizal fungi

Abstract

Hyperaccumulating plants can take up extraordinarily large concentrations of one or more metal(loid)s from the soil and accumulate it/them in the aboveground tissues without exibiting any visible toxicity symptoms. Among more than 700 plant taxa reported to have evolved this unique phenotype, the most common is the hyperaccumulation of nickel (Ni), and less common is the hyperaccumulation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb), antimony (Sb), selenium (Se), thallium (Tl) or zinc (Zn). Metal(loid) hyperaccumulation is a result of several independent evolutionary events and despite considerable efforts, none of the proposed hypotheses on the environmental constraints driving these events has been supported fully to date. Among several tolerance strategies enabling hyperaccumulation is the allocation of metal(loid)s to competent cell types, typically away from photosynthetic apparatus, to limit damage to plant metabolism. Recently, the involvement of microorganisms colonizing roots in hyperacumulation phenomenon has achieved increased attention due to their role in the mobilization of metal(loid)s in the soil. The complex interactions between hyperaccumulation and belowground microbiome are of primary interest for phytoremediation, a promising green technology for removing or immobilisation of metal(loid)s in the soil with the help of plants. In this review, we discuss and complement current reports on the contribution of microorganisms to metal(loid) hyperaccumulation.

Metrics

Metrics Loading ...

Author Biographies

  • Valentina Bočaj, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia

    PhD Student

  • Marjana Regvar, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia

    Full Professor

References

Aboudrar, W., Schwartz, C., Morel, J.L., Boularbah, A., 2013. Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. Journal of Soils and Sediments, 13 (3), 501–507. doi:10.1007/s11368-012-0614-x

Arnold, A.E., Maynard, Z., Gilbert, G.S., Coley, P.D., Kursar, T.A., 2000. Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3 (2), 267–274. doi: 10.1046/j.1461-0248.2000.00159.x

Audet, P., Charest, C., 2007. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environmental Pollution, 147 (3), 609–614. doi: 10.1016/j.envpol.2006.10.006

Baker, A.J.M., Brooks R.R., 1989. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery, 1 (2), 81–126.

Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.A.C., 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-polluted Soils. In: Terry, N., Banuelos, G.S. (eds.) Phytoremediation of Contaminated Soil and Water, CRC Press, 85–107.

Ban, Y., Tang, M., Chen, H., Xu, Z., Zhang, H., Yang, Y., 2012. The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One,, 7 (10). doi: 10.1371/journal.pone.0047968

Barrow, J.R., 2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza, 13 (5), 239–247. doi:10.1007/s00572-003-0222-0

Bert, V., Meerts, P., Saumitou-Laprade, P., Salis, P., Gruber, W., Verbruggen, N., 2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil, 249 (1), 9–18. doi:10.1023/A:1022580325301

Berthelot, C., Leyval, C., Foulon, J., Chalot, M., Blaudez, D., 2016. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiology Ecology, 92 (10), 1–14. doi:10.1093/femsec/fiw144

Bihanic, C., Petit, E., Perrot, R., Cases, L., Garcia, A., Pelissier, F., ... Grison, C., 2021. Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia. Scientific Reports, 11 (23780), 1–16. doi:10.1038/s41598-021-03151-9

Bordenstein, S.R., Theis, K.R., 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biology, 13 (8), 1–23. doi: 10.1371/journal.pbio.1002226

Boyd, R.S., 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil, 293 (1–2), 153–176. doi: 10.1007/s11104-007-9240-6

Brooks, R.R., Lee, J., Reeves, R.D., Jaffre, T., 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 7, 49–57. doi: 10.1016/0375-6742(77)90074-7

Brundrett, M.C., 2006. Understanding the Roles of Multifunctional Mycorrhizal and Endophytic Fungi. In: Schulz, B., Boyle, C., Sieber, T, (eds.) Microbial Root Endophytes, Springer, 9, 281–298.

Buscot, F., 2015. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. Journal of Plant Physiology, 172, 55–61. doi: 10.1016/j.jplph.2014.08.013

Cochran, A.T., Bauer, J., Metcalf, J.L., Lovecka, P., Sura de Jong, M., Warris, S., ... Pilon-Smits, E.A.H., 2018. Plant selenium hyperaccumulation affects rhizosphere: enhanced species richness and altered species composition. Phytobiomes Journal, 2 (2), 82–91. doi: 10.1094/PBIOMES-12-17-0051-R

Ernst, W.H.O., 2005. Phytoextraction of mine wastes – options and impossibilities. Geochemistry, 65, 29–42. doi:10.1016/j.chemer.2005.06.001

Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., ... Chu, H., 2017. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology and Biochemistry. 113, 275–284. doi:10.1016/j.soilbio.2017.06.020

García-Salamanca, A., Molina-Henares, M.A., van Dillewijn, P., Solano, J., Pizarro-Tobías, P., Roca, A., ... Ramos, J.L., 2012. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology, 6 (1), 36–44. doi: 10.1111/j.1751-7915.2012.00358.x

Harley, J.L., Harley, E.L., 1987. A check‐list of mycorrhiza in the British flora. New Phytologist, 105, 1–102. doi 10.1111/j.1469-8137.1987.tb00674.x

He, C., Wang, W., Hou, J., 2019. Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Frontiers in Microbiology, 10, 1–14. doi: 10.3389/fmicb.2019.01364

Inácio, J., Pereira, P., de Carvalho, M., Fonseca, Á., Amaral-Collaço, M.T., Spencer-Martins, I., 2002. Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microbial Ecology, 44 (4), 344–353. doi: 10.1007/s00248-002-2022-z

Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 135 (4), 575–585. doi: 10.1046/j.1469-8137.1997.00729.x

Jumpponen, A.,, 2001. Dark septate endophytes - are they mycorrhizal? Mycorrhiza, 11 (4), 207–211. doi: 10.1007/s005720100112

Jumpponen, A., Trappe, J.M., 1998. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140 (2), 295–310. doi: 10.1046/j.1469-8137.1998.00265.x

Kozhevnikova, A.D., Seregin, I.V., Gosti, F., Schat, H., 2017. Zinc accumulation and distribution over tissues in Noccaea caerulescens in nature and in hydroponics: a comparison. Plant and Soil, 411 (1), 5–16. doi: 10.1007/s11104-016-3116-6

Krämer, U., 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534. doi: 10.1146/annurev-arplant-042809-112156

Kushwaha, P., Neilson, J.W., Maier, R.M., Babst-Kostecka, A., 2022. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Science of the Total Environment, 803, 1–12. doi: 10.1016/j.scitotenv.2021.150006

Likar, M., Regvar, M., 2009. Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 407 (24), 6179–6187. doi: 10.1016/j.scitotenv.2009.08.045

Likar, M., Regvar, M., 2013. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant and Soil, 370 (1–2), 593–604. doi: 10.1007/s11104-013-1656-6

Lindow, S.E., Brandl, M.T., 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69 (4), 1875–1883. doi: 10.1128/AEM.69.4.1875

Luo, J., Tao, Q., Wu, K., Li, J., Qian, J., Liang, Y., ... Li, T., 2017. Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology, 101 (21), 7961–7976. doi: 10.1007/s00253-017-8469-0

Martin, F.M., van der Heijden, M.G.A., 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytologist, 242, 1486–1506. doi: 10.1111/nph.19541

Martos, S., Busoms, S., Pérez-Martín, L., Llugany, M., Cabot, C., Poschenrieder, C., 2021. Identifying the specific root microbiome of the hyperaccumulator Noccaea brachypetala growing in non-metalliferous soils. Frontiers in Microbiology, 12, 1–17. doi: 10.3389/fmicb.2021.639997

McGrath, S.P., Zhao, F.J., 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14 (3), 277–282. doi: 10.1016/S0958-1669(03)00060-0

Mendes, R., Garbeva, P., Raaijmakers, J.M., 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37 (5), 634–663. doi: 10.1111/1574-6976.12028

Mijovilovich, A., Morina, F., Bokhari, S.N., Wolff, T., Küpper, H., 2020. Analysis of trace metal distribution in plants with lab-based microscopic X-ray fluorescence imaging. Plant Methods, 16 (1), 1–21. doi: 10.1186/s13007-020-00621-5

Muehe, E.M., Weigold, P., Adaktylou, I.J., Planer-Friedrich, B., Kraemer, U., Kappler, A., Behrens, S., 2015. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Applied and Environmental Microbiology, 81 (6), 2173–2181. doi: 10.1128/AEM.03359-14

Newsham, K.K., 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190 (3), 783–793. doi: 10.1111/j.1469-8137.2010.03611.x

Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: Page, A.L. (eds.) Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, Soil Science Society of America, 403–430.

Orłowska, E., Zubek, S., Jurkiewicz, A., Szarek-Łukaszewska, G., Turnau, K., 2002. Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 12 (3), 153–159. doi: 10.1007/s00572-001-0155-4

Phillips, J.M., Hayman, D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transections of the British Mycological Society, 55 (1), 158–160. doi: 10.1016/s0007-1536(70)80110-3

Plaza, S., Weber, J., Pajonk, S., Thomas, J., Talke, I.N., Schellenberg, M., ... Kraemer, U., 2015. Wounding of Arabidopsis halleri leaves enhances cadmium accumulation that acts as a defense against herbivory. BioMetals, 28 (3), 521–528. doi: 10.1007/s10534-015-9829-9

Pollard, A.J., 2022. Inadvertent uptake of trace elements and its role in the physiology and evolution of hyperaccumulators. Plant and Soil, 483, 1–9. doi: 10.1007/s11104-022-05856-w

Pongrac, P., Sonjak, S., Vogel-Mikuš, K., Kump, P., Nečemer, M., Regvar, M., 2009. Roots of metal hyperaccumulating population of Thlaspi praecox (Brassicaceae) harbour arbuscular mycorrhizal and other fungi under experimental conditions. International Journal of Phytoremediation, 11 (4), 347–359. doi: 10.1080/15226510802565527

Pongrac, P., Vogel-Mikuš, K., Kump, P., Nečemer, M., Tolrà, R., Poschenrieder, C., ... Regvar, M., 2007. Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere, 69 (10), 1602–1609. doi: 10.1016/j.chemosphere.2007.05.046

Pongrac, P., Vogel-Mikuš, K., Vavpetič, P., Tratnik, J., Regvar, M., Simčič, J., ... Pelicon. P., 2010. Cd induced redistribution of elements within leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268 (11–12), 2205–2210. doi: 10.1016/j.nimb.2010.02.089

Pongrac, P., Zhao, F.J., Razinger, J., Zrimec, A., Regvar, M., 2009. Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environmental and Experimental Botany, 66 (3), 479–486. doi: 10.1016/j.envexpbot.2009.03.010

Pošćić, F., Marchiol, L., Schat, H., 2013. Hyperaccumulation of thallium is population-specific and uncorrelated with caesium accumulation in the thallium hyperaccumulator, Biscutella laevigata. Plant and Soil, 365 (1–2), 81–91. doi: 10.1007/s11104-012-1384-3

Psaras, G.K., Constantinidis, T., Cotsopoulos, B., Manetas, Y., 2000. Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Annals of Botany, 86 (1), 73–78. doi: 10.1006/anbo.2000.1161

Rascio, N., 1977. Metal accumulation by some plants growing on zinc-mine deposits. Oikos, 29 (2) , 250–253. doi: 10.2307/3543610

Rascio, N., Navari-Izzo, F., 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180 (2), 169–181. doi: 10.1016/j.plantsci.2010.08.016

Raskin, L., Smith, R.D., Salt, D.E., 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226. doi: 10.1016/S0958-1669(97)80106-1

Redondo-Gómez, S., Mateos-Naranjo, E., Vecino-Bueno, I., Feldman, S.R., 2011. Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. Journal od Hazardous Materials, 185 (2–3), 862–869. doi: 10.1016/j.jhazmat.2010.09.101

Reeves, R.D., 2006. Hyperaccumulation of Trace Elements by Plants. In: Morel, J.L., Echevarria, G., Goncharova, N. (eds.) Phytoremediation of Metal-Contaminated Soils, Springer, 68, 25–52.

Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G., van der Ent, A., 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218 (2), 407–411. doi: 10.1111/nph.14907

Regvar, M., Likar, M., Piltaver, A., Kugonič, N., Smith, J.E., 2010. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil, 330 (1), 345–356. doi: 10.1007/s11104-009-0207-7

Regvar, M., Vogel, K., Irgel, N., Hildebrandt, U., Wilde, P., Bothe, H., 2003. Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. Journal of Plant Physiology, 160, 615–626. doi: 10.1078/0176-1617-00988

Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J.P., L’Haridon, F., 2016. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytologist, 210 (3), 1033–1043. doi: 10.1111/nph.13808

Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M.L., ... Daffonchio, D., 2014. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17 (2), 316–331. doi: 10.1111/1462-2920.12439

Rosenberg, E., Zilber-Rosenberg, I., 2016. Microbes drive evolution of animals and plants: the hologenome concept. Mbio, 7 (2), 1–8. doi: 10.1128/mBio.01395-15

Rosenblueth, M., Martínez-Romero, E., 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19 (8), 827–837. doi: 10.1094/MPMI-19-0827

Schlaeppi, K., Bulgarelli, D., 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions, 28 (3), 212–217. doi: 10.1094/MPMI-10-14-0334-FI

Sharma, A., Sinharoy, S., Bisht, N.C., 2023. The mysterious non-arbuscular mycorrhizal status of Brassicaceae species. Environmental Microbiology, 25 (5), 917–930. doi: 10.1111/1462-2920.16339

Sonjak, S., Beguiristain, T., Leyval, C., Regvar, M., 2009. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant and Soil, 314 (1–2), 25–34. doi: 10.1007/s11104-008-9702-5

Stoyke, G., Currah, R.S., 1991. Endophytic fungi from the mycorrhizae of alpine ericoid plants. Canadian Journal of Botany, 69 (2), 347–352. doi: 10.1139/b91-047

Strullu-Derrien, C., Selosse, M.A., Kenrick, P., Martin, F.M., 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist, 220 (4), 1012–1030. doi: 10.1111/nph.15076

Trautwig, A.N., Jackson, M.R., Kivlin, S.N., Stinson, K.A., 2023. Reviewing ecological implications of mycorrhizal fungal interactions in the Brassicaceae. Frontiers in Plant Science, 14, 1–12. doi: 10.3389/fpls.2023.1269815

Treu, R., Laursen, G.A., Stephenson, S.L., Landolt, J.C., Densmore, R., 1996. Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza, 6 (1), 21–29. doi: 10.1007/s005720050101

Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18 (11), 607–621. doi: 10.1038/s41579-020-0412-1

Trotta, A., Falaschi, P., Cornara, L., Minganti, V., Fusconi, A., Drava, G., Berta, G., 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 65 (1), 74–81. doi: 10.1016/j.chemosphere.2006.02.048

van der Ent, A., Malaisse, F., Erskine, P.D., Mesjasz-Przybyłowicz, J., Przybyłowicz, W.J., Barnabas, A.D., ... Harris, H.H., 2019. Abnormal concentrations of Cu-Co in Haumaniastrum katangense, Haumaniastrum robertii and Aeolanthus biformifolius: contamination or hyperaccumulation? Metallomics, 11 (3), 586–596. doi: 10.1039/c8mt00300a

van der Ent, S., van Hulten, M., Pozo, M.J., Czechowski, T., Udvardi, M.K., Pieterse, C.M.J., Ton, J., 2009. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytologist, 183 (2), 419–431. doi: 10.1111/j.1469-8137.2009.02851.x

van der Heijden, M.G.A., de Bruin, S., Luckerhoff, L., van Logtestijn, R.S.P., Schlaeppi, K., 2015. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. The ISME Journal, 10 (2), 389–399. doi: 10.1038/ismej.2015.120

Veiga, R.S.L., Faccio, A., Genre, A., Pieterse, C.M.J., Bonfante, P., van der Heijden, M.G.A., 2013. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant, Cell & Environment, 36 (11), 1926–1937. doi: 10.1111/pce.12102

Verbruggen, N., Hermans, C., Schat, H., 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181 (4), 759–776. doi: 10.1111/J.1469-8137.2008.02748.X

Vergara, C., Araujo, K.E.C., Alves, L.S., Souza, S.R., de Santos, L.A., Santa-Catarina, C., ... Zilli, J.É., 2018. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology, 49 (1), 67–78. doi: 10.1016/j.bjm.2017.04.010

Větrovský, T., Kolaříková, Z., Lepinay, C., Awokunle Hollá, S., Davison, J., Fleyberková, A., ... Kohout, P., 2023. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytologist, 240 (5), 2151–2163. doi: 10.1111/nph.19283

Vogel-Mikuš, K., Drobne, D., Regvar, M., 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133 (2), 233–242. doi: 10.1016/j.envpol.2004.06.021

Vogel-Mikuš, K., Pongrac, P., Kump, P., Nečemer, M., Regvar, M., 2006. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environmental Pollution, 139 (2), 362–371. doi: 10.1016/j.envpol.2005.05.005

Vogel-Mikuš, K., Simčič, J., Pelicon, P., Budnar, M., Kump, P., Nečemer, M., ... Regvar, M., 2008. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant, Cell & Environment, 31 (10), 1484–1496. doi: 10.1111/j.1365-3040.2008.01858.x

Wan, X., Lei, M., Chen, T., 2016. Interaction of As and Sb in the hyperaccumulator Pteris vittata L.: changes in As and Sb speciation by XANES. Environmental Science and Pollution Research, 23 (19), 19173–19181. doi: 10.1007/s11356-016-7043-0

Wang, J.L., Li, T., Liu, G.Y., Smith, J.M., Zhao, Z.W., 2016. Unravelling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Scientific Reports, 6, 1–12. doi: 10.1038/srep22028

Whipps, J.M., Hand, P., Pink, D., Bending, G.D., 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105 (6), 1744–1755. doi: 10.1111/j.1365-2672.2008.03906.x

White, P.J., Pongrac, P., 2017. Heavy-Metal Toxicity in Plants. In: Shabala, S. (eds.) Plant Stress Physiology, CABI, 300–331.

Whiting, S.N., de Souza, M.P., Terry, N., 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 35 (15), 3144–3150. doi: 10.1021/es001938v

Wilcox, H.E., Wang, C.J.K., 1987. Mycorrhizal and pathological associations of dematiaceous fungi roots of 7 month old tree seedlings. Canadian Journal for Forest Research, 17, 884–899. doi: 10.1139/x87-140

Wójcik, M., Vangronsveld, J., D’Haen, J., Tukiendorf, A., 2005. Cadmium tolerance in Thlaspi caerulescens: II. localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany, 53 (2), 163–171. doi: 10.1016/S0098-8472(04)00047-4

Xiao, E., Cui, J., Sun, W., Jiang, S., Huang, M., Kong, D., ... Ning, Z., 2021. Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition. Environmental Microbiology, 23 (4), 1959–1971. doi: 10.1111/1462-2920.15299

Yakti, W., Kovács, G.M., Vági, P., Franken, P., 2018. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecology & Diversity, 11 (5–6), 637–648. doi: 10.1080/17550874.2019.1610912

Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., Schvartz, C., 2005. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 31 (5), 755–762. doi: 10.1016/j.envint.2005.02.004

Yung, L., Blaudez, D., Maurice, N., Azou-Barré, A., Sirguey, C., 2021. Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens. Environmental Science and Pollution Research, 28 (13), 16544–16557. doi: 10.1007/s11356-020-11793-x

Linking microbiome and hyperaccumulation in plants (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 6552

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.